
Routing for unmanned aerial vehicles: touring dimensional sets

Justo Puerto ∗,
IMUS, Universidad de Sevilla

Carlos Valverde †

Universidad de Sevilla.

December 7, 2020

Abstract

In this paper we deal with an extension of the crossing postman problem to design Hamiltonian
routes that have to visit different shapes of dimensional elements (neighborhoods or polygonal chains)
rather than edges. This problem models routes of drones that must visit a number of geographical
elements to deliver some good or service and then move directly to the next target element using
straight line displacements. We present two families of mathematical programming formulations.
The first one is time-dependent and captures a number of actual characteristics of real applications
at the price of using three indexes variables. The second one are not referenced to the stages of
the route. We compare them on a testbed of randomly generated instances with different shapes
of elements: second order cone representable (SOC) and polyhedral neighborhoods and polygonal
chains. The computational result reported in this paper show that our models are useful and can
solve to optimality medium size instances of sizes similar to other combinatorial problems with
neighborhoods. To address larger instances we also present a heuristic algorithm that runs in two
phases: clustering and VNS. This algorithm performs very well in quality of solutions provided and
can be used to initialize the exact methods with promising initial solutions.

1 Introduction
Drones, or UAVs (unmanned aerial vehicles), provide new opportunities for improving logistics in a
variety of settings. We refer them as drones since the main characteristic that we wish to exploit
is their aerial displacement using straight lines. Recent technological improvements as battery life,
better communication devices and reduction in manufacturing costs have increased the use of drones in
logistics. Drones have been used in many different fields as disaster management in remote regions ([11]),
parcel delivery [12], communication coverage ([1]), traffic monitoring, infrastructure inspection, coastal
surveying and many other applications. The reader is referred to the review [18] for further references.

The availability of this new technology has brought new business opportunities and at the same time
has opened a lot of new challenges in the Operations Research field to propose solutions to new emerging
problems in the areas logistics and routing. As drones play a growing role in business operations, questions
of planning and optimization increase in practical and academic importance. Actual characteristics of
drone’s displacement make most previous routing models in literature not readily applicable. Unlike
standard ground vehicles, that must follow paths, one of the specific characteristic of drones is their
ability to use direct connections by straight lines between targeted destinations because they can fly
across areas.

In 1962, Meigu Guan introduced the undirected Chinese Postman Problem (CPP) whose aim is to
determine a least-cost closed route that traverses all edges of the graph. Orloff [17] extended the CPP
to travel through a subset of required edges that is known as the Rural Postman Problem (RPP). Based
on this idea, Garfinkel [7] relaxed the RPP to the case in which it is permitted to leave the edges of the
network and cross from one edge to another at points other than the original vertices. These ARPs are
studied in depth in [5]. On the other hand, this problem takes the structure of the well-known Traveling
Salesman Problem that is studied in [8] using convex sets. Yuan [22] presented in his work a hybrid

∗e-mail: puertous.es. Corresponding author
†email: cvalverdeus.es

1

ar
X

iv
:2

01
2.

02
54

7v
1

 [
m

at
h.

C
O

]
 4

 D
ec

 2
02

0

framework in which metaheuristics and classical TSP solvers are combined strategically to produce high
quality solutions for TSPN with arbitrary neighborhoods.

The aim of this paper is motivated by the design of drones’ routes that must connect a number of
targets with given shapes, that we will call from now on elements, that are spread on an area. These
elements are dimensional. This means that they can not be represented, in general, by points. Moreover,
they have some requirements of service beyond its simple visit: either one has to visit a percentage of its
total length (assuming that their dimension is one) or one has to cross at least some distance over them (if
they are two dimensional). Some previous attempt that can be applied to this problem is to approximate
all the shapes by polygons with sufficiently large number of breakpoints (see [4]). Nevertheless, we would
like to exploit some new features of MINLP to address an alternative approach. Obviously, we have
to impose some limit to the shapes of the considered elements to achieve tractable models. As a first
building block, we restrict ourselves to two main types of elements (see Figure 1): convex bodies and
piecewise linear chains (including segments). This limitation will be extended to more general shapes at
the end of the paper.

Figure 1: An example of convex sets and polygonal chains considered in the problem

We assume a structure of costs trying to capture actual elements in these situations. The costs of
moving between elements may change over time: it may be cheaper to go from A to B at time 1 than at
time 2. The cost of moving on the elements may be cheaper or more expensive than moving freely over
the ground: controlling the drone over polygonal chains to do some inspection may be more expensive
than flying directly between targets. On the other hand, one can obtain some discount for flying over
some large area (parks, lakes, natural reserves...) because the drone can do a secondary job, as reporting
information, while doing its primary delivery job.

The goal is to find a Hamiltonian route that connects all the elements satisfies the visits’ requirements
and is of minimum total cost.

The contribution of this paper is the combination on the same model of different elements that
have never been put together before: design of Hamiltonian routes without underlying graph structure,
required targets defined on elements (like in the RPP), free entry and exit points over the elements, use
of dimensional elements (as in the TSP with neighborhoods). Combining these features altogether gives
rise to a challenging new problem that is analyzed for the first time in this paper.

The paper is structured in 8 sections. The first section is the introduction. In the second section
we describe the problem and set the notation followed in the rest of the paper. Section 3 is devoted
to present different valid formulations of the problem. In Section 4 we present a heuristic algorithm
for solving XPPN. This heuristic has two phases clustering and VNS. The results show that it provides
good quality solution in very limited computation time. Section 5 deals with some strengthening of our
formulations: pre-processing variables and deriving valid inequalities to be added to the formulations.

2

Next, in Section 6 we present a decomposition algorithm ’a la’ Benders that can be also applied to
solve the problem. We derive all the details of that decomposition and show preliminary computational
results.

An extensive computational experience is reported in Section 7. There, we compare the different
formulations in terms of final gaps and computing time. The paper ends with a section devoted to
conclusions and extensions, where we list some interesting open lines of research connected with the
problems addressed in this paper.

2 Description of the Problem
Let G = (V,E) be a connected undirected graph, whose vertices are embedded in R2. (The reader may
note that extensions to the three dimensional space are possible at the price of increasing the models’
complexity.) Associated with each vertex v ∈ V , we attach an element that can belong to two different
types: either a convex set or a polygonal chain. In the former case, let Cv ⊂ R2 denote the convex set
associated to v that must contain v in its interior. In the latter, let Pv ⊂ R2 denote the polygonal chain
attached to v that we assume to be parameterized by its breakpoints A1

v, . . . , A
nv+1
v , where nv is the

number of line segments of the polygonal chain. We denote

VC = {v ∈ V : v is associated with a convex set},

VP = {v ∈ V : v is associated with a polygonal chain}.

Feasible solutions to the Crossing Postman Problem with Neighborhoods (XPPN) problem consists of
a set of pairs of points, X = {(x1

v, x
2
v) : v ∈ V }, that denotes the access and exit points to the component

associated with vertices v ∈ V , together with a Hamiltonian tour T on the graph G′ = (X,E′), with
edge set E′ = Eout ∪ Ein, where:

Eout = {(x1
v, x

2
w) : (v, w) ∈ E}, Ein = {(x1

v, x
2
v) : v ∈ V }.

Edges in the set Eout are links between different elements whereas those in Ein are those that define
the part of the tour that is traveled within the convex neighborhoods or the polygonal chains. Edges
lengths are given by the Euclidean distance, ‖ · ‖2, between their endpoints.

The overall cost of a feasible solution (X, T) is then given by the overall sum of outside edges plus
the discounted sum of the inner edges:

d(X, T) =
∑

evw=(x1
v,x

2
w)∈T

d(x1
v, x

2
w) +

∑
ev=(x1

v,x
2
v)∈T

fv d(x1
v, x

2
v),

where fv is a discount factor for traveling within the neighborhoods.
Throughout this paper we employ the following notation:

• TG as the set of incidence vectors associated with Hamiltonian tours on G, i.e., TG = {z ∈ R|E|+ :
z is a Hamiltonian tour on G}.

• X =
(∏

v∈VC Cv
)
∪
(∏

v∈VP Pv

)
, where Cv (resp. Pv) is the neighborhood (resp. polygonal chain)

associated to vertex v, which contains the possible sets of vertices for the Hamiltonian tours of
XPPN.

The goal of XPPN is to find a feasible solution (X, T) of minimal total cost. Then, it can be expressed
as:

min
∑

e∈Eout

deze +
∑

e∈Ein

fede

s.t. z ∈ TG, x ∈ X
(1)

Some observations can be stated from the formulation above:

1. Fixing x ∈ X results in a Rural Postman Problem that has been analyzed in the literature and the
state of current research provides good heuristics to solve it efficiently.

2. Because of the expression of its objective function, XPPN is not separable. It is suitable to represent
this problem as a MINLP.

3

In this paper, we focus on the case where the sets Cv are second order cone (SOC) representable, that
is, the sets can be expressed by using second-order cone constraints as follows:

‖Bix+ bi‖ ≤ cTi x+ di, i = 1, . . . , N, (C-C)

where x ∈ R2 is the decision variable and Bi, bi, ci and di are parameters of the constraint. Note that
these constraints can model linear constraints (for Bi, bi ≡ 0), ellipsoids and hyperbolic constraints (see
[13] for more details).

These type of elements could be extended further to unions of SOC representable sets. This type of
neighborhood is obtained introducing binary variables, whose meaning is similar to those in disjunctive
programming. Thus, we can determine in which set of the union happen the access or the departure
points in those unions of sets.

Let {C1
v , . . . , CNv

v } be the second order cone representable sets that makes the neighborhood associated

to the vertex v and let Uv =

Nv⋃
j=1

Cjv denote the union of these sets. Consider the binary variable χij
v that

assumes the value of one if xiv is located in the set Cjv and zero otherwise. Thus, for each v ∈ V , we can
model that xiv ∈ Uv by using the following inequalities for each i = 1, 2:

xiv ∈ Uv ⇐⇒
{
‖Aj

vx
i
v + bjv‖ ≤ (cjv)Txiv +M j

v (1− χij
v), j = 1, . . . , Nv,∑Nv

j=1 χ
ij
v = 1.

(U-C)

The reader may observe that one can replace C-C by U-C in all our formulations without altering
their validity. Therefore, our model can deal easily with these more general forms of neighborhoods.

On the other hand, the second type of elements are the piecewise linear constraints. Let nv be the
number of line segments of the polygonal chain v. Since we need to refer to interior points of the segment,
these continuum of points is parametrized by the two endpoints of the segment: x ∈ [Aj

v, A
j+1
v] if and

only if ∃γ ∈ [0, 1] such that x = γAj
v + (1 − γ)Aj+1

v . In order to deal with them, we introduce the
following variables for each vertex v ∈ VP and i = 1, 2:

• uv: Binary variable that determines the traveling direction in the polygonal chain v.

• γijv : Continuous variable in [0, 1] that represents the parameter value of the xiv variable in the line
segment j of the polygonal chain v, j = 1, . . . , nv.

• µij
v : Binary variable that is one when xiv is located in the line segment j of the polygonal chain v,

and zero otherwise, for j = 1, . . . , nv.

Using these variables, we can model the polygonal chain introducing the following inequalities for
each i = 1, 2:

xiv ∈ Pv ⇐⇒

λi
v − j ≥ γij

v − (nv + 1)(1− µij
v), j = 2, . . . , nv + 1

λi
v − j ≤ γij

v + (nv + 1)(1− µij
v), j = 2, . . . , nv + 1

γi1
v ≤ µi1

v

γij
v ≤ µij−1

v + µij
v j = 2, . . . , nv

γinv
v ≤ µinv

v∑nv
j=1 µ

ij
v = 1∑nv+1

j=1 γij
v = 1

xiv =
∑nv+1

j=1 γij
v A

j
v

(P-C)

Observe that the first and second inequalities determine the lower and upper limits of each segment
of Pv. If µij

v = 0 the inequalities are always fulfilled and there is no distinguished (entry or exit) point in
the j-th segment. The third and fourth inequalities link µ and λ variables. They state that the variable
γij that gives the representation of a point xi on the line segment j is active (non-null) only if this line
segment is chosen (to enter of exit), i.e., µij = 1. The fifth equation sets that only one line segment is
chosen for entering or leaving each polygonal chain. Finally, the sixth equation and seventh inequality
sets the representation of xi as a convex combination of the extreme points of the adequate line segment.

In addition, we assume that the tour must traverse at least some given percentage αv of each polygonal
chain total length. Denoting by λi the parameter value of xiv in the parametrization of the polygonal chain
Pv and λmin

v and λmax
v the parameter values λ of the access (entry) and exit points to Pv, respectively,

we can model that condition by the following absolute value constraint:

4

|λ1
v − λ2

v| ≥ αv ⇐⇒

λ1
v − λ2

v = λmax
v − λmin

v

λmax
v + λmin

v ≥ αvnv
λmax
v ≤ nv(1− uv)
λmin
v ≤ nvuv,

(α-C)

The above modeling assumptions are sufficient to model a wide range of actual situations that appear
in the routing problems with drones that we want to model. Obviously, they could be more general at
the price of not being easily implemented with off-the-shelf solvers.

2.1 Some interesting particular cases
Three very interesting well-known models appear as particular cases of the problems that can be modeled
within our framework. If the element associated with each vertex is the empty set the problem reduces to
the standard traveling salesman problem. If the element associated with each vertex v ∈ V is a segment
Cv = [x1

v, x
2
v], then XPPN becomes the classical Rural Postman Problem in which the edges (x1

v, x
2
v) are

required, in the complete graph induced by these vertices with edge lengths given by the Euclidean norm
distance. On the other hand, if the considered neighborhoods are big enough so that ∩v∈V Cv 6= ∅, then
the problem reduces to finding a degenerate one-vertex tour and the solution to the XPPN is that vertex
with cost 0. Finally, if all neighborhoods are line segments and no condition is imposed on required
percentage of visit, we obtain the Crossing Postman Problem which is studied in [7].

Figure 2 shows an example of the solution obtained for a case in which the elements are circles,
triangles and we also have two polygonal chains to visit in our required route.

Figure 2: An example with 9 elements: 7 convex sets and 2 polygonal chains

The discussion above allows us to state the complexity of the XPPN.

Theorem 1. The decision version of the problem XPPN, given a length L to decide whether the graph
has a XPPN tour of length at most L, is NP-complete.

5

The proof follows using a reduction from TSP that as shown above is a particular case of this problem.

3 Mixed Integer Non Linear Programming Formulations
In this section we present alternative MINLP formulations for the XPPN that will be compared compu-
tationally in later sections. First, we start with a time dependent formulation that allows us to include
a number of actual requirements in the modeling phase such as time dependent travel distances, time
windows or time dependent discount factors. Then, we give another formulation that does not make
reference to stages in the routes and that simplifies the model at the price of losing some of the above
mentioned characteristics.

3.1 A Time Dependent Formulation
One way to model the routes in our problem is to make variables dependent on the index of the stage
when an element is visited in the sequence of visited elements. Thus, this formulation requires binary
variables depending on the index order when they are chosen. Since variables depend on time also
parameters in the problem as discount factors for traveling the neighborhoods (btv) and distances dt (as
proxy for travel times βt) can be dependent on the instant when they are traveled.

To model the problem, we introduce a binary variable ytv to select that the element associated with
vertex v is visited at stage t. In addition, we define the following variables:

• ytv: Binary variable whose value is one when v is visited at the t position in the route sequence and
zero otherwise.

• ztvw: Binary variable that is one when v and w are visited consecutively, assuming that v is visited
at the instant t and zero otherwise.

• ztvw = ytv y
t+1
w , v 6= w.

• dtvw: Continuous variable that represents the distance between pairs of chosen points v, w from
different components at the instant t.

• dtv: Continuous variable that represents the distance between two consecutive points within the
same component associated with v ∈ V at the instant t.

• λ1
v, λ

2
v: Continuous variables determining the position of x1

v and x2
v, respectively, in the polygonal

chain Pv.

Using these variables, the first formulation follows:

min

|V |∑
t=1

∑
v 6=w

dtvwz
t
vw +

|V |∑
t=1

∑
v∈V

f tvd
t
v (2a)

s.t. dtvw ≥ βt
uv‖x2

v − x1
w‖, ∀v 6= w, (2b)

dtv ≥ βt
v‖x1

v − x2
v‖, ∀v ∈ V, (2c)∑

v∈V
ytv = 1, ∀t, (2d)

|V |∑
t=1

ytv = 1, ∀v ∈ V, (2e)

ytv + yt+1
w − 1 ≤ ztvw, ∀v 6= w, t = 1, . . . , |C| − 1, (2f)

(C-C), (P-C), (α-C) (2g)

The first addend of the objective function (2a) includes the traveling distance among different elements
while the second one accounts for the distances between the entry and exit points of each component
taking into account the discount factor for travelling within this component at the instant t. Constraints
(2d) and (2e) state, respectively, that in each instant the route visits one element and each component is
traversed once and only once. Constraint (2f) is obtained by linearizing ztvw and ensures that if we travel
from v to w assuming that we are in v at the instant t, then we visit v in t and w in t + 1. Constraint

6

(2g) refers to the domain of the entry and exit points of each element in the problem, as well as the
minimal required percentage of the polygonal chain length that must be traversed. They were defined
in Section 2.

Despite the versatility of this formulation for capturing actual characteristics of drone routes, its
drawback comes from the three index dimension of its variables which makes it difficult to handle
medium size instances. In the next section, we shall simplify this formulation making it independent
of time at the price of losing some of its real-world characteristics. Because of that, the following step
consists on reducing the dimension of z variables and simplifying useless variables.

3.2 Non-Time Dependent Formulations
The simplification mentioned above can be performed based on the rationale of ensuring connectivity
through different sets of inequalities. In particular, we compare Miller-Tucker-Zemlin (MTZ) inequalities
and subtour elimination constraints (SEC). All formulations use the following sets of decision variables:

• Binary variables ze ∈ {0, 1}, e ∈ E, to represent the edges of the tours.

• Continuous variables de ≥ 0, e = {v, w} ∈ Eout ⊆ E′, to represent the distance d(x1
v, x

2
w) between

the pairs of selected points of different elements (neighborhoods) and dv ≥ 0, v ∈ V , to represent
the distance d(x1

v, x
2
v) between the pairs of points of the same element.

Let
De = {d ∈ R|Eout|

+ : de ≥ d(x1
v, x

2
w),∀e = (v, w) ∈ Eout, x ∈ X},

Dv = {d ∈ R|Ein|
+ : dv ≥ d(x1

v, x
2
v),∀v ∈ V, x ∈ X},

denote the domains for the feasibility of the d variables. Then, a generic bilinear formulation for XPPN
is

min
∑

e∈Eout

deze +
∑
e∈Ein

fvdv (Pdz)

s.t. z ∈ TG, de ∈ De, dv ∈ Dv,

(C-C), (P-C), (α-C)

The reader should observe that, as already mentioned, the above formulation is bilinear since the first
term of the objective function contains products of variables of the form deze, for e ∈ Eout.

Next, we use McCormick’s envelopes [14] for the linearization of those bilinear terms of the objective
function. We define additional variables pe ≥ 0, e ∈ Eout that stand for that product.

Replacing the products by the new variables and introducing a new set of constraints enforcing the
correct representation, we obtain the following formulation:

min P =
∑

e∈Eout

pe +
∑
v∈V

fvdv (RL-XPPN)

s.t. pe ≥ de −Me(1− ze) ∀e ∈ Eout,

(C-C), (P-C), (α-C),
z ∈ TG, de ∈ De, dv ∈ Dv pe ≥ 0, ∀e ∈ Eout.

Here Me denotes an upper bound of the distance between the sets that are joined by e.
In addition, we describe the sets De and Dv using the constraints

‖x1
v − x2

w‖2 ≤ de, ∀e = {v, w} ∈ Eout, (D1)

‖x1
v − x2

v‖2 ≤ dv, ∀v ∈ V, (D2)
x ∈ X , (D3)

which set the distance values and impose that x belongs to its suitable neighborhood.
Furthermore, this formulation can be reinforced by adding the valid inequalities: pe ≥ meze,∀e ∈ Eout

and dv ≤ Mv,∀v ∈ V , where me and Mv are bounds that are adjusted in Section 5. The first family of
valid inequalities sets lower bounds on the values for pe whereas the second ones sets upper bounds on
the distances traveled within neighborhoods.

7

The above discussion leads us to strengthen a generic formulation for XPPN. This formulation will
be particularized once the connectivity condition of the solutions is specifically introduced in the model.

min P =
∑

e∈Eout

pe +
∑
v∈V

fvdv

s.t. pe ≥ de −Me(1− ze) ∀e ∈ Eout, (LIN-Mc)
pe ≥ meze ∀e ∈ Eout,

dv ≤Mv ∀v ∈ V ,
(C-C), (P-C), (α-C),
z ∈ TG

The two formulations that we present below differ from one another in the family of constraints
used to enforce connectivity. One of them is by the family of subtour elimination constraints (SEC) [6].
The other one relies on a compact formulation based on the well-known Miller-Tucker-Zemlin (MTZ)
constraints [15].

3.2.1 A valid formulation for XPPN based on SECs.

The family of SEC is well-known in combinatorial optimization. It enforces connectivity by imposing that
the number of edges among any subset of vertices can not exceed its cardinality minus one. Augmenting
these constraints into the generic formulation presented above we obtain the following valid formulation
for XPPN:

min P =
∑

e∈Eout

pe +
∑
v∈V

fvdv (SEC-XPPN)

s.t. (LIN-Mc), ((D1)), ((D2)),∑
w∈V \{v}

zvw = 1, ∀v ∈ V , (C1)

∑
w∈V \{v}

zwv = 1, ∀v ∈ V , (C2)

∑
e=(v,w):v,w∈S

ze ≤ |S| − 1, ∀S ⊂ V , (SEC)

(C-C), (P-C), (α-C)

Assignment Constraints (C1) and (C2) ensure that any feasible solution found enters and exits each
component of the problem exactly once. Constraint (SEC) prevents the existence of subtours. This
constraint forces that in any subset of nodes S included in V there can not be more edges between nodes
in S than the number of nodes that contains minus one, thus avoiding the existence of cycles.

Since there is an exponential number of SEC constraints, when we implement this formulation we need
to perform a row generation procedure including constraints whenever they are required by a separation
oracle. To find SEC inequalities, as usual, we search for disconnected components in the current solution.
Among them, we choose the shortest subtour found in the solution to be added as a lazy constraint to
the model.

If the considered distance between components is symmetric, we obtain the symmetric formulation
based on SECs, denoted by (sSEC-XPPN). In this formulation, we can halve the number of binary
variables and replace constraints (C1) and (C2) in (SEC-XPPN) by the following connectivity restrictions:∑

w∈V \{v}

zwv = 2, ∀v ∈ V.

3.2.2 XPPN formulation based on the Miller Tucker Zemlin.

This section addresses an alternative formulation that results replacing SEC inequalities by the so called
Miller-Tucker-Zemlin constraints [15]. In this formulation, we introduce the integer variable sv to generate

8

an alternative formulation that eliminates the subtours and the exponential number of inequalities of
(SEC-XPPN).

min P =
∑

e∈Eout

pe +
∑
v∈V

fvdv (MTZ-XPPN)

s.t. (LIN-Mc), ((D1)), ((D2)),∑
w∈V \{v}

zvw = 1, ∀v ∈ V , (C1)

∑
w∈V \{v}

zwv = 1, ∀v ∈ V , (C2)

|V |zvw + sv − sw ≤ |V | − 1, ∀e = (v, w) ∈ Eout, (MTZ1)
s1 = 1, (MTZ2)
2 ≤ sv ≤ |V |, ∀v ∈ V , (MTZ3)

sv − sw + |V |zwv ≤ |V | − 1, ∀e = (v, w) ∈ Eout, w > 1, (MTZ4)
sv − sw + (|V | − 2)zwv ≤ |V | − 1, ∀e = (v, w) ∈ Eout, v > 1, (MTZ5)

(C-C), (P-C), (α-C)

Again constraints (C1) and (C2) require that in each feasible solution only one edge departs from
node v and only one edge enters at node v for any v ∈ V , respectively. The constraints (MTZ1)-(MTZ3)
enforce connectivity, i.e., that there is only a single tour covering all vertices. The constraints (MTZ4)
and (MTZ5) define the intermediate conditions for the tour that may improve performance of subtour
elimination constraints (see [20] for more details).

For the sake of completeness, we include as a remark a well-known explanation of these last constraints
[15].

Remark. Constraints (MTZ1)-(MTZ3) model the elimination of subtours.
To show that, we must see that every feasible solution contains only one closed sequence of cities and

that for every single tour covering all cities, there are values for the dummy variables sv that satisfy the
constraints.

To prove that every feasible solution contains only one closed sequence of cities, it suffices to show
that every subtour in a feasible solution passes through city 1. If we sum all the inequalities corresponding
to zvw = 1 for any subtour of k steps, we obtain:

|V |k ≤ (|V | − 1)k,

which is not possible.
It now must be shown that for every single tour covering all cities, there are values for the dummy

variables ui that satisfy the constraints. If we define sv = t if city v is visited in step t. Then

|V |zvw + |V | − 2 ≤ |V |zvw + sv − sw ≤ n− 1,

forces zvw = 0. For zvw = 1, we have:

sv − sw + |V |zvw = t− (t+ 1) + |V | = |V | − 1,

satisfying the constraint.

Now we state a result related to the relationship between the SEC and MTZ polytopes of our formu-
lations of the XPPN, that is, the feasible regions of the respective LP relaxations of these models.

Theorem 2. The SEC polytope is contained in the MTZ polytope for the XPPN.

Proof. Notice that the only difference between these polytopes is the constraint that ensures the elim-
ination of subtours. Therefore, it is enough to see that the (SEC) constraints are stronger than those
given in (MTZ1)-(MTZ3), that is proved in [21].

9

4 A heuristic algorithm for XPPN
In this section we present a heuristic algorithm for solving XPPN. This algorithm has two different
applications. On the one hand, it provides good quality feasible solutions for XPPN that become a
promising alternative to exact methods whenever the size of the problems is large. On the other hand, it
also helps in solving exactly XPPN by feeding the exact formulations with a good initial solution which
in turns speeds up the branch and bound search. The considered algorithm is composed by two phases:
the Clustering Phase and the Variable Neighborhood Search (VNS) Phase. The so called clustering
phase determines some points in each dimensional element (polygonal chain or neighborhood) and then
the VNS phase finds a heuristic tour on the complete graph spanned by the previously obtained points.

The Clustering Phase

The first phase of the heuristic algorithm is based on solving a relatively easy single facility location
problem: the Weber or median Problem. The solution of this problem looks for a prototype point (a
representative) of the dimensional elements in the problem (neighborhoods and polygonal chains) that
minimizes the sum of the Euclidean distance from all those elements, i.e., we want to find a point C and
some points xv in the element associated with the vertex v ∈ V such that:

minimize
∑
v∈V
‖xv − C‖

subject to (C-C), (P-C), (α-C)
(3)

The idea of this approach is to find some points that are likely to be close to the true chosen points in
each element in the final optimal route. Figure 3 shows an example that combines three neighborhoods
and seven polygonal chains. Red points represent the points of each set and the green point is the
proposed 1-median obtained after solving the corresponding Weber problem described above.

Figure 3: Illustration of the first phase of the heuristic algorithm

The Variable Neighborhood Search Phase

Once the points of each set have been chosen, the idea is to find the minimal cost route that joins these
points. To obtain this route, we have used the well-known Variable Neighborhood Search metaheuristic
developed in [16]. The code has been taken from [19].

Using the example depicted in Figure 3, we generate a tour considering this VNS approach with a
maximum number of 25 attempts, a neighborhood of size 5 and 10 iterations. The final result is shown
in Figure 4.

10

Figure 4: Application of the VNS phase to the example of Figure 3

Finally, in order to build a feasible solution for XPPN we take into account the position of the points
(represented by x1

v and x2
v) and the order in which they have to be visited in the tour obtained by VNS

phase of our heuristic (represented by zvw). Once the solution is built, it can also be taken as an initial
solution for any of the exact formulations presented above.

5 Strengthening the formulation of XPPN

5.1 Pre-processing
In this section we explore the geometry of the neighborhoods that appear in the problem to fix a priori
some variables and to increase the efficiency of the model.

Firstly, we consider two special cases that relate the position of the entry and exit points of each
neighborhood with the coefficient fv of the objective function.

Remark. If the problem verifies that fv = 0 for all v ∈ VC, then the entry and exit points x1
v and x2

v

selected in each neighborhood are the same that the ones obtained by minimizing the distance between the
neighborhoods. (No sé cómo escribirlo, lo hablamos a ver cómo se podría poner)

Remark. If the problem verifies that fv ≥ 1 for all v ∈ VC, then, in the optimum, x1
v = x2

v.

Proof. Let x2
u and x1

w, the exit (resp. entry) point of the neighborhood u ∈ VC (resp. w ∈ VC) and
suppose that in the optimum x1

v 6= x2
v, i.e., d(x1

v, x
2
v) > 0. Let x′v =

x1
v+x2

v

2 the middle point of these
points. If we compare the length of the new built path p′ = [x2

u, x
′
v, x

1
w] with the path p = [x2

u, x
1
v, x

2
v, x

1
w],

we obtain by using the triangular inequality that

length(p′) = d(x2
u, x
′
v) + d(x′v, x

1
w)

≤ d(x2
u, x

1
v) + fvd(x1

v, x
′
v) + fvd(x′v, x

2
v) + d(x2

v, x
1
w)

= d(x2
u, x

1
v) + fvd(x1

v, x
2
v) + d(x2

v, x
1
w)

= length(p).

This fact contradicts that p′ is the optimum.

From now on, we assume in the rest of this section that fv ≥ 1 for all v ∈ V . The following outcome
restricts the domain where the selected point are located.

11

Proposition 1. Any point selected in an optimal solution of the XPPN must be place in the boundary
of the neighborhoods.

Proof. By induction in the number of neighborhoods.

• n = 2 : it is known that the minimum distance between two convex sets occurs in the boundary of
these sets.

• n ⇒ n + 1 : let assume that the problem has n + 1 sets and there exists a neighborhood Nk

whose selected point in the optimum is in int(Nk). Let T be the triangle formed by the point
A of the previous neighborhood, the point B in the neighborhood k and the point C of the next
neighborhood in the optimum edge sequence. Let also AC the line segment that joins A and C.
The idea of the proof is to construct a point in the border of Nk whose distance to A and C is
lower. We have two cases:

– If A,B,C are aligned, we consider the point B′ = AC ∩ ∂Nk. Since B′ is also aligned with A
and C, AB′ +B′C = AB +BC.

– If A,B,C are not aligned, we consider the point B′ = r⊥∩∂Nk, where r⊥ is the perpendicular
line to the line segment AC and ∂Nk is the boundary of Nk. Note that this intersection
produces two points in ∂Nk, we take the closest one to AC. If we call T ′ the triangle generated
by A, B′ and C, then the height of T ′ to AC is lower than the one of T , hence by the
Pythagorean Theorem, AB′ < AB and B′C < BC, which is a contradiction.

The special case in which all the neighborhoods are circles, allows us to limit more the location of
the points based on the construction given in the Proposition 1.

Corollary 2.1. Any point selected in an optimal solution of the XPPN when all the neighborhoods are
circles is placed in some arc of one of the circumferences inside of the convex hull generated by the center
of the circles.

Proof. By induction in the number of circles.

• n = 2 : the points are located in the line segment that joins the center of the circles.

• n⇒ n+1 : let assume that the problem has n+1 circles and there exists a circle Nk whose selected
point in the optimum is not in the convex hull of the center of the neighborhoods. Let T be the
triangle formed by the point A of the previous neighborhood, the point B in the neighborhood k
and the point C of the next neighborhood in the optimum edge sequence. Let also AC be the line
segment that joins A and C. The idea of the proof is to construct a point in the border of the
convex hull C whose distance to A and C is lower. We have two cases depending on the location
of B in the neighborhood:

– If A,B,C are aligned, we consider the point B′ = AC ∩ ∂Nk. Since B′ is also aligned with A
and C, AB′ +B′C = AB +BC.

– If A,B,C are not aligned, we split the circumference on two arcs AR and AB . These arcs are
built by taking the perpendicular line to the edge of the convex hull:

∗ If B ∈ AR, we take B′ the projection to the convex hull and it produces a triangle T ′
with lower height to AC. Then, we can use the Proposition 1 to construct a point in the
boundary of Nk that lies in the convex hull. (See Figure)

∗ If B ∈ AB , we construct B′ the diametrically opposite point of B in Nk and it also
produces a smaller height that contradicts the assumption that B gives the shortest tour.

12

Now we give a result to eliminate some neighborhoods and simplify the problem without modifying
the objective value.

Proposition 2. Given two neighborhoods A and B, if B ⊃ A, then B can be deleted in the problem.

Proof. Starting from the optimal solution of problem without B, we are going to build an optimal
solution including B that is essentially the same. Let z∗ the optimal tour by deleting the neighborhood
B in the problem. By connectivity, there exist two neighborhoods A−1 and A+1 that are connected
with A, i.e., such that z∗A−1A

= z∗AA+1
= 1. In addition, let x∗A be the point chosen to visit the

neighborhood A. If we include B ⊃ A in the problem and we fix xB = x∗A and zAB = zBA+1
= 1.

This solution is also a Hamiltonian path whose objective value is the same because d(A,B) = 0 and
d(B,A+1) = d∗(A,A+1).

5.2 Valid inequalities
The different models that we have proposed include in one way or another big-M constants. We have
defined different big-M constants along this work. In order to strengthen the formulations we provide
good upper bounds for those constants. In this section we present some results that adjust them for each
kind of set considered in our models.

The first bound we need to adjust is Me that denotes an upper bound of the distance between the
sets joined by the edge e. We have three cases that depend of the shape of the sets A and B:

• If A and B are both ellipsoids, we cannot easily compute the maximum distance between A and
B, but we can generate an upper bound of this distance by taking diametrically opposite points
of minimum radius circles that contain each entire ellipsoid. When both ellipsoids are circles, this
bound coincides with the maximum distance.

• If A is an ellipsoid and B is a polygon or a polygonal chain, we can set this bound by the maximum
of the distances of each vertex of B to the center of A plus the radius of the minimum circle that
contains the ellipsoid A.

13

• If A and B are both polygons or polygonal chains, this bound can be computed exactly by taking
the maximum of the distances between vertices of A and B.

The second bound to be adjusted is me. It denotes a lower bound of the distance of the sets joined by
the edge e. In this case, we can compute this distance exactly by solving a convex program the minimizes
the distance of the sets A and B.

In the Figures 5, 6 and 7 we show the selected maximal (red) and minimal (blue) bounds depending
on the shape of the sets:

Figure 5: Upper and lower bound when both sets are ellipsoids

Figure 6: Upper and lower bound when a set is a polygon and the other is an ellipsoid

In addition, the third bound represent the maximal distance between two points within a given
neighborhood. We can compute this upper bound according to the shape of this set (see Figure 8):

• If the set is an ellipsoid, we can take diametrically opposite points of the minimum radius circle
that contains this ellipsoid.

• If the set is a polygon, we can compute the maximum of the distances between each pair of vertices.

• If the set is a polygonal chain, this bound equals the length of the polygonal.

14

Figure 7: Upper and lower bound when both sets are polygons

Figure 8: Upper bound on the maximal distance within a set

6 A decomposition algorithm
In this section we present an alternative row generation approach to solve the XPPN based on a Benders
decomposition of the problem. The general method is based on the following observation: If we fix
z ∈ TG in the generic formulation of XPPN, we obtain a continuous SOC problem, which is well-known
to be convex. On the other hand, the objective function that we are considering is bilinear. Hence, we
can use a Benders-like decomposition approach (see [2]) to generate an iterative algorithm that solves
this problem.

For a given z̄ ∈ TG, the “optimal” vertices and distances of its associated XPPN can be computed by
solving the following subproblem:

min d(z̄) =
∑

e∈Eout

dez̄e +
∑
v∈V

fvdv (Pdz̄)

s.t. de ∈ De, dv ∈ Dv.

Note that the number of d variables in (Pdz̄) is 2n, because only distances with nonzero z̄e variables
need to be calculated. Thus, Benders decomposition is a good approach for the XPPN model (see [3]).
The explicit form of the Benders cuts is the following:

P ≥ d(z̄) +
∑

e:z̄e=1

Me(ze − 1) +
∑

e:z̄e=0

meze (4)

15

where P =
∑

e∈Eout
pe +

∑
v∈V fvdv with pe ≥ 0 and Me and me are the upper and lower bounds

estimated in the above section.
Therefore, the relaxed master problem at the K-th iteration of the row-generation solution algorithm

can be stated as:

P ∗ = min P

P ≥ d(z̄k) +
∑

e:z̄k
e =1

Me(z
k
e − 1) +

∑
e:z̄k

e =0

mez
k
e , k = 1, . . . ,K, (5)

P =
∑

e∈Eout

pe +
∑
v∈V

fvdv (6)

z ∈ TG.

Adding the above cuts sequentally gives rise to the solution scheme described in Algorithm 1:

Algorithm 1: Decomposition Algorithm for solving XPPN.
Initialization: Let z0 ∈ TG be an initial solution and ε a given threshold value.

Set LB = 0, UB = +∞, z̄ = z0.
while |UB − LB| > ε do

1. Solve (Pdz̄) for z to get d(z).

2. Add the cut P ≥ d(z̄) +
∑

e:z̄e=1Me(ze − 1) +
∑

e:z̄e=0meze to the current master problem.

3. Obtain the optimal value P̄ to the current master problem, and its associated solution z̄.

4. Update LB = max{LB, P̄} and UB = min{UB,
∑

e∈E d(z)eze +
∑

v∈V fvdv}

end

The stopping criterion is that the gap between the upper and lower bound does not exceed the fixed
threshold value ε.

Theorem 2.4 in [9] states the finite convergence of the decomposition approach under the following
assumptions: convexity and finiteness of the feasible domains, closeness of the “linking” constraints
between the sets, and convexity of the objective functions. In our case, the finiteness of the number of
underlying Hamiltonian tour of TG, the convexity of (Pdz̄) for any z ∈ TG, and the linear separability
of the problem allows to apply the above result, which assures that Algorithm 1 terminates in a finite
number of steps (for any given ε ≥ 0).

To avoid the enumeration of all Hamiltonian tours of TG, we have started with a non-empty set of
cuts which give a suitable initial representation of the lower envelope of P .

Given that the master problem exhibits a combinatorial nature, we have embedded the cut generation
mechanism within a branch-and-cut scheme.

The computational results obtained by our implementation are included in table 1. This table com-
pares the results of the Final Gap, cpu time and number of cuts added applying the decomposition
algorithm versus those obtained with formulation MTZ. From these results we conclude that the de-
composition algorithm performs worse than formulation MTZ even for small size problems. To reinforce
our conclusion, we have also included a performance profile of number of solved instances versus time
for formulations sSEC, MTZ and the decomposition algorithm (see Figure 9). The reader can observe
that the number of solved instances within the time limit is approximately one half comparing Benders
decomposition with MTZ and sSEC. These results lead us not to include this algorithm in the final
computational experience for larger problem sizes presented in the next section.

16

Size Radii Mode Final Gap (Benders) Time (Benders) #Cuts Final Gap (MTZ) Time (MTZ)
10 1 1 0.0 15.72 19.0 0.0 1.93
10 1 2 0.0 23.64 55.4 0.0 0.75
10 1 3 0.0 13.22 25.8 0.0 0.72
10 1 4 0.0 33.96 29.8 0.0 1.52
10 2 1 76.1 6430.08 1209.0 0.0 38.83
10 2 2 56.14 4777.58 1009.6 0.0 14.14
10 2 3 0.0 1766.06 380.6 0.0 2.23
10 2 4 10.57 5993.57 804.6 0.0 2.52
10 3 1 96.21 7208.56 1481.2 0.0 487.94
10 3 2 92.16 7203.99 1352.2 0.0 35.81
10 3 3 9.29 5832.51 520.4 0.0 13.28
10 3 4 84.41 7214.86 921.8 0.0 133.81
10 4 1 98.79 7205.35 2283.0 19.28 3513.38
10 4 2 95.53 7207.51 1343.4 0.0 238.98
10 4 3 19.55 7220.14 499.0 0.0 20.25
10 4 4 82.69 7211.46 789.8 0.0 1142.17

Table 1: Computational comparison between MTZ formulation and Benders algorithm for problems with
up to 10 neighbors

Figure 9: Performance profile: Time vs #Solved

7 Computational Experiments
In this section we have performed a series of experiments to compare the non-time dependent formulations
presented in Section 3.2. Based on the work of Blanco, Fernández and Puerto (see [3] for more details)
we have generated five instances of size m ∈ [5, 10] and we report the average results. We have considered
three different types of neighbors to be visited:

• Circles of radii r.

• Regular polygons of radii r with a random number of vertices |V | ∈ [3, 10].

17

• Polygonal chains parameterized by its breakpoints that are distanced in r and some random per-
centage α ∈ [0, 1].

In addition, the centers or breakpoints of these elements have been generated uniformly in the square
[0, 100]. On the one hand, we have studied four different scenarios to generate the radii to define the
elements:

• Small size Neighborhoods (r = 1): Radii randomly generated in [0, 5].

• Small-Medium Neighborhoods (r = 2): Radii randomly generated in [5, 10].

• Medium-Large size Neighborhoods (r = 3): Radii randomly generated in [10, 15].

• Large size Neighborhoods (r = 4): Radii randomly generated in [15, 20].

On the other hand, we have also considered four modes depending on the nature of the neighborhoods:

• Mode 1: All neighborhoods are circles.

• Mode 2: All neighborhoods are regular polygons.

• Mode 3: All neighborhoods are polygonal chains.

• Mode 4: Mixture of the three previously considered neighborhoods.

All the formulations were coded in Python 3.7, and solved using Gurobi 8.1.0. [10] in a Intel(R)
Xeon(R) E-2146G CPU @ 3.50 GHz and 64GB of RAM. A time limit of 2 hours was set in all the
experiments.

Our preliminary test is devoted to decide whether initializing the solution process with an initial
solution helps is solving the problem or not. In this regard, we have performed a comparison between
formulation MTZ with and without the initial solution provided by the VNS heuristic. The results are
summarized in Table 2. This table reports average results for instances of sizes 5,10 and 15 neighbors
with all combinations of radii and modes. It compares the final gap and running times for the formulation
with initial solution (Final Gap (Init), Opt. Time (Init)) and without (Final Gap (NoInit), Opt.
Time (NoInit)). The results are also depicted in the boxplox diagrams in Figure 10. Both, table and
figure, clearly show that loading an initial solution helps in reducing the gap and the cpu time: all
the instances up to 10 neighbors are solved to optimality with and without initial solution but for 15
neighbors the final gap in the first case is always better than in the latter (blue boxes are always below
orange ones). Based on this results, in the following, we have always solved the instances loading an
initial solution.

18

Size Radii Mode Final Gap (Init) Final Gap (NoInit) Opt. Time (Init) Opt. Time (NoInit)
5 1 1 0.0 0.0 0.61 0.45
5 1 2 0.0 0.0 0.12 0.08
5 1 3 0.0 0.0 0.21 0.13
5 1 4 0.0 0.0 0.25 0.27
5 2 1 0.0 0.01 0.27 0.4
5 2 2 0.0 0.0 0.13 0.11
5 2 3 0.0 0.0 0.17 0.14
5 2 4 0.0 0.0 0.17 0.19
5 3 1 0.0 0.0 0.44 0.42
5 3 2 0.0 0.01 0.16 0.12
5 3 3 0.0 0.0 0.17 0.16
5 3 4 0.0 0.0 0.3 0.35
5 4 1 0.0 0.01 0.34 0.4
5 4 2 0.0 0.0 0.14 0.34
5 4 3 0.0 0.0 0.16 0.16
5 4 4 0.0 0.0 0.28 0.3
10 1 1 0.0 0.0 1.93 4.53
10 1 2 0.0 0.0 0.75 0.84
10 1 3 0.0 0.0 0.72 1.77
10 1 4 0.0 0.0 1.52 2.95
10 2 1 0.0 0.0 38.83 61.53
10 2 2 0.0 0.0 14.14 44.93
10 2 3 0.0 0.0 2.23 4.65
10 2 4 0.0 0.0 2.52 7.5
10 3 1 0.0 1.09 487.94 1049.86
10 3 2 0.0 0.0 35.81 153.37
10 3 3 0.0 0.0 13.28 29.43
10 3 4 0.0 0.0 133.81 510.58
10 4 1 19.28 10.0 3513.38 4134.31
10 4 2 0.0 0.0 238.98 1253.21
10 4 3 0.0 0.0 20.25 82.39
10 4 4 0.0 11.75 1142.17 3490.88
15 1 1 0.0 0.0 18.58 196.71
15 1 2 0.0 0.0 3.38 23.37
15 1 3 0.0 0.0 314.57 44.56
15 1 4 0.0 0.0 10.94 90.1
15 2 1 6.69 23.17 3135.29 7200.72
15 2 2 0.0 14.06 2460.78 7200.49
15 2 3 0.0 0.0 14.58 49.51
15 2 4 0.0 5.88 1052.16 4660.88
15 3 1 46.33 59.74 5760.56 7200.28
15 3 2 20.79 31.2 5760.84 7200.8
15 3 3 0.0 0.0 322.77 599.25
15 3 4 14.07 19.17 5865.82 6896.78
15 4 1 100.0 100.0 7200.47 7200.98
15 4 2 20.2 36.9 4421.25 7200.51
15 4 3 0.19 0.72 2195.2 3566.82
15 4 4 21.6 27.71 7200.42 7200.5

Table 2: Computational comparison between MTZ formulation with and without initial solution

The remaining information of our computational experiments can be found in tables 3, 4 and 5. The
first one reports our results for formulation SEC, the second one for sSEC (symmetric version of SEC)
and the third one for MTZ. Information in all the three tables is organized in the same way. Each row
shows averages of five instances for different combinations of factors (Size, Radii and Mode) each one
with four different levels. Our tables have 9 columns. The first three (Size, Radii and Mode) describe
the parameters of the problem. Then, we report the final gap (% Final Gap), time required by the
exact method (Exact Time), time required by the heuristic (Heur. Time) and the % improvement of
the gap with respect to the initial solution (% Improved Gap).

Figure 10: Comparison of the final gap between MTZ formulation with and without initial solution after
7200 seconds

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap
5 1 1 0.0 0.11 2.29 0.83
5 1 2 0.0 0.06 2.2 0.57
5 1 3 0.0 0.14 3.82 0.37
5 1 4 0.0 0.12 2.8 0.92
5 2 1 0.0 0.09 2.35 2.51
5 2 2 0.0 0.06 2.37 2.25
5 2 3 0.0 0.15 3.51 1.37
5 2 4 0.0 0.09 2.68 2.53
5 3 1 0.0 0.11 2.26 3.79
5 3 2 0.0 0.08 2.34 3.85
5 3 3 0.0 0.16 3.72 2.05
5 3 4 0.0 0.15 2.82 2.29
5 4 1 0.0 0.13 2.31 4.42
5 4 2 0.0 0.26 2.18 5.18
5 4 3 0.0 0.16 3.48 3.69
5 4 4 0.0 0.14 2.89 8.05
10 1 1 0.0 0.95 4.31 3.25
10 1 2 0.0 0.47 4.37 2.56
10 1 3 0.0 1.72 7.72 1.28
10 1 4 0.0 4.81 5.6 1.53
10 2 1 0.0 21.74 4.73 6.48
10 2 2 0.0 8.45 4.36 6.37
10 2 3 3.23 2949.61 9.25 2.21
10 2 4 1.38 2188.88 6.14 3.22
10 3 1 0.0 522.23 5.08 10.0
10 3 2 0.0 84.64 4.9 9.26
10 3 3 3.47 4324.06 10.54 1.69
10 3 4 0.0 404.51 5.29 7.48
10 4 1 5.32 2484.47 5.17 7.76
10 4 2 0.0 539.03 4.85 9.21
10 4 3 3.57 3656.07 10.11 5.47
10 4 4 16.69 6548.93 6.18 7.86
15 1 1 0.0 14.12 5.63 2.74
15 1 2 0.0 4.63 5.58 4.59
15 1 3 12.12 7200.55 12.9 0.6
15 1 4 0.46 1597.94 7.44 4.2
15 2 1 29.42 7200.43 5.7 11.07
15 2 2 17.89 6178.28 5.6 8.74
15 2 3 13.91 7200.95 12.55 0.1
15 2 4 23.44 7200.6 7.25 3.11
15 3 1 70.59 7200.52 5.77 12.59
15 3 2 35.67 7200.65 5.78 12.85
15 3 3 9.7 5828.43 12.44 2.16
15 3 4 45.94 7200.79 9.95 0.49
15 4 1 0.0 10.68 5.65 11.74
15 4 2 43.12 7200.7 5.67 7.02
15 4 3 7.6 5789.95 12.67 3.58
15 4 4 41.1 7200.6 8.48 6.57
20 1 1 2.58 3189.58 6.9 2.72
20 1 2 1.78 2894.34 6.47 4.59
20 1 3 10.17 5797.93 13.57 1.78
20 1 4 11.01 6434.25 11.34 1.47
20 2 1 63.7 7200.95 6.41 10.96
20 2 2 39.3 7201.34 6.77 10.83
20 2 3 11.82 6050.34 14.24 4.17
20 2 4 37.99 7200.84 10.26 2.74
20 3 1 95.47 7200.71 6.7 15.29
20 3 2 55.89 7201.07 6.62 16.12
20 3 3 17.75 7201.0 14.43 2.0
20 3 4 45.88 7200.79 11.44 11.6
20 4 1 0.0 855.97 6.72 10.99
20 4 2 60.12 7201.0 6.43 1.85
20 4 3 10.06 7201.0 14.34 4.05

Table 3: Asymmetric SEC results with initial solution

20

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap
5 1 1 0.0 0.08 2.38 0.0
5 1 2 0.0 0.04 2.29 0.0
5 1 3 0.0 0.08 3.74 0.51
5 1 4 0.0 0.05 2.88 0.09
5 2 1 0.0 0.06 2.35 0.01
5 2 2 0.0 0.06 2.38 0.0
5 2 3 0.0 0.08 3.59 1.5
5 2 4 0.0 0.06 2.72 1.26
5 3 1 0.0 0.05 2.28 0.01
5 3 2 0.0 0.05 2.36 2.47
5 3 3 0.0 0.09 3.67 0.81
5 3 4 0.0 0.07 2.83 3.36
5 4 1 0.0 0.06 2.32 0.01
5 4 2 0.0 0.05 2.31 0.13
5 4 3 0.0 0.07 3.62 5.95
5 4 4 0.0 0.08 2.95 1.9
10 1 1 0.0 0.29 4.52 0.01
10 1 2 0.0 0.14 4.66 0.01
10 1 3 0.0 0.2 7.8 0.0
10 1 4 0.0 0.23 5.51 0.04
10 2 1 0.0 3.72 5.41 0.05
10 2 2 0.0 1.88 5.69 2.28
10 2 3 0.0 1.34 9.34 0.0
10 2 4 0.0 1.36 9.68 1.17
10 3 1 0.0 45.54 5.27 0.15
10 3 2 0.0 9.37 4.9 0.53
10 3 3 0.0 490.19 10.53 0.67
10 3 4 0.0 7.78 5.33 4.51
10 4 1 0.0 520.74 5.22 0.26
10 4 2 0.0 36.72 4.99 8.1
10 4 3 0.54 1474.78 11.41 0.0
10 4 4 0.0 1461.93 6.84 2.91
15 1 1 0.0 2.1 6.83 0.0
15 1 2 0.0 0.86 6.46 1.11
15 1 3 3.14 2881.8 13.26 0.0
15 1 4 0.0 1.17 7.92 0.0
15 2 1 12.93 5840.0 7.19 0.0
15 2 2 8.9 4560.43 7.0 0.75
15 2 3 11.18 5761.15 15.14 0.11
15 2 4 8.3 4642.84 8.36 0.0
15 3 1 64.34 7200.42 7.39 0.0
15 3 2 28.89 7200.44 7.45 0.0
15 3 3 5.59 5765.79 16.7 0.42
15 3 4 24.3 7200.44 10.87 2.94
15 4 1 0.0 271.8 7.55 0.0
15 4 2 35.34 7200.52 7.41 3.21
15 4 3 12.84 7200.49 248.17 0.96
15 4 4 35.59 7200.53 10.82 0.8
20 1 1 0.0 175.65 11.47 0.81
20 1 2 0.95 1632.15 10.98 0.03
20 1 3 0.0 466.74 18.07 1.28
20 1 4 8.59 2887.48 16.38 1.36
20 2 1 43.77 7200.49 11.95 0.0
20 2 2 26.72 7200.65 11.51 0.0
20 2 3 4.65 4354.1 27.26 0.0
20 2 4 26.11 7200.5 16.42 0.37
20 3 1 81.51 7200.5 12.52 0.0
20 3 2 47.27 7200.95 12.13 0.0
20 3 3 16.84 7200.81 37.43 0.26
20 3 4 44.18 7200.59 19.15 0.0
20 4 1 0.0 483.78 13.51 0.0
20 4 2 55.27 7200.73 12.43 0.0
20 4 3 15.84 7200.84 3191.77 0.28
20 4 4 40.08 7200.79 20.47 0.0

Table 4: Symmetric SEC results with initial solution

21

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap
5 1 1 0.0 0.61 1.47 0.02
5 1 2 0.0 0.12 1.3 0.0
5 1 3 0.0 0.21 2.01 0.08
5 1 4 0.0 0.25 1.64 0.06
5 2 1 0.0 0.27 1.33 2.38
5 2 2 0.0 0.13 1.25 0.01
5 2 3 0.0 0.17 1.9 0.64
5 2 4 0.0 0.17 1.49 2.22
5 3 1 0.0 0.44 1.28 1.01
5 3 2 0.0 0.16 1.28 4.02
5 3 3 0.0 0.17 1.95 0.73
5 3 4 0.0 0.3 1.68 0.44
5 4 1 0.0 0.34 1.28 15.36
5 4 2 0.0 0.14 1.26 8.52
5 4 3 0.0 0.16 1.98 1.55
5 4 4 0.0 0.28 1.7 4.39
10 1 1 0.0 1.93 2.63 0.09
10 1 2 0.0 0.75 2.3 0.01
10 1 3 0.0 0.72 4.49 0.3
10 1 4 0.0 1.52 5.11 0.05
10 2 1 0.0 38.83 2.33 0.01
10 2 2 0.0 14.14 2.11 2.29
10 2 3 0.0 2.23 15.6 0.97
10 2 4 0.0 2.52 3.28 0.77
10 3 1 0.0 487.94 2.44 0.16
10 3 2 0.0 35.81 2.22 1.8
10 3 3 0.0 13.28 14.76 2.94
10 3 4 0.0 133.81 3.1 1.16
10 4 1 19.28 3513.38 2.39 0.47
10 4 2 0.0 238.98 2.28 13.46
10 4 3 0.0 20.25 21.99 5.45
10 4 4 0.0 1142.17 3.57 5.52
15 1 1 0.0 18.58 5.98 0.15
15 1 2 0.0 3.38 2.98 0.35
15 1 3 0.0 314.57 9.09 0.2
15 1 4 0.0 10.94 8.58 2.26
15 2 1 6.69 3135.29 3.7 0.67
15 2 2 0.0 2460.78 3.8 4.81
15 2 3 0.0 14.58 87.78 3.68
15 2 4 0.0 1052.16 8.27 2.28
15 3 1 46.33 5760.56 4.12 4.04
15 3 2 20.79 5760.84 4.51 3.57
15 3 3 0.0 322.77 420.37 4.26
15 3 4 14.07 5865.82 7.74 2.37
15 4 1 100.0 7200.47 5.23 3.13
15 4 2 20.2 4421.25 4.35 9.72
15 4 3 0.19 2195.2 237.9 6.28
15 4 4 21.6 7200.42 6.55 11.68
20 1 1 0.0 743.32 13.95 2.78
20 1 2 0.0 110.91 62.75 9.0
20 1 3 1.6 2896.62 17.67 0.13
20 1 4 1.16 3112.33 20.05 1.19
20 2 1 37.26 7200.45 90.1 9.42
20 2 2 19.43 7200.68 5.23 4.37
20 2 3 0.0 1051.22 254.06 5.93
20 2 4 17.15 7200.48 19.33 2.06
20 3 1 78.16 7200.35 6.05 4.07
20 3 2 34.44 5763.72 5.63 6.17
20 3 3 0.73 4530.27 299.19 5.04
20 3 4 30.71 7200.52 22.32 7.34
20 4 1 100.0 7200.63 8.71 6.0
20 4 2 41.32 7200.67 35.68 25.64
20 4 3 1.83 7200.52 307.92 7.45
20 4 4 29.84 7200.52 33.81 9.7

Table 5: MTZ results with initial solution

To have a clearer view of the results we also present some comparative boxplots obtained from the
tables above. First of all, we report the final gap after two hours of running time. We have gathered all
the information in Figure 11. It is organized in four rows corresponding with the different modes: row

22

i shows results for Mode i, i = 1, . . . , 4. Within each row, there are four columns one per radius size.
Then, each graph within this 4 × 4 grid contains comparative diagrams for the four different problem
sizes considered, namely n = 5, 10, 15, 20 neighbors. Finally, for each problem size we compare the results
obtained for our three different formulations Miller-Tucker-Zemlin (MTZ), Subtour elimination (SEC)
and the symmetric version of SEC (sSEC). For instance, looking at the second row, third column (Mode
2, Radius 3) one can see that for n = 5 and 10, which correspond to the first two boxes the gap of
the three formulations is zero in all the instances (actually the boxes are collapsed to lines). However,
for n = 15 and 20 MTZ seems to outperforms SEC and sSEC, and moreover, sSEC is also better than
SEC since the green boxes lie below the orange ones. As a general comment, one can observe that for
all combinations of factors MTZ (the blue boxes) outperforms SEC (orange) and sSEC (green) and also
sSEC reports smaller gaps than SEC, with the only exception of Mode 3 where SEC seems to work better
than sSEC.

Finally, we have included in Figure 12 a performance profile graph of number of instances solved versus
time. This figure shows that SEC formulation is the weakest since it solves less number of instances in
the same cpu time. The comparison between MTZ and sSEC is not that clear although in the long run
MTZ seems to outperforms sSEC since the former solves more instances than the latter.

Figure 11: Final gap after 7200 seconds

We also compare next, the behavior of SEC and sSEC in number of cuts required by these two
formulations to solve the corresponding problems. As before, we have organized the information in a

23

Figure 12: Performance profile: Time vs #Solved

4 × 4 grid of boxplox graphs. The reader can easily observe that sSEC always requires less number of
cuts (blue boxes corresponding to SEC are always above orange ones corresponding to sSEC) showing
that this formulation is more accurate than SEC: reports smaller gaps (see Figure 11) and needs less
number of cuts.

8 Concluding remarks
This paper has analyzed a novel version of the crossing postman problem with neighbors. We have shown
that the problem can be cast within the framework of the family of mixed integer second order cone
programming and several exact formulations are presented and computationally tested on an extensive
testbed of instances. Additionally, we have presented a heuristic algorithm providing good quality
solutions and that can be considered for large scale problems and also as a procedure to obtain initial
solutions to be loaded into exact solvers with the exact formulations. Computational results show that
the problem is very hard and already for problems with 20 neighbors exact approaches fail to find optimal
solution within two hours of cpu time.

This research opens up several research lines and extensions of the basic problem that can be included
in the model. Among them we mention finding better formulations or decomposition schemes that help
in solving exactly larger instance sizes; and alternative heuristic algorithms that allow tackling large
scale problems. Other extensions of the proposed models considered in this paper are the consideration
of unions of second order cone representable sets that can fit more general neighborhoods, barriers that
represent some buildings that the tour can not cross or including conditions that control the displacement
on the border of nonlinear neighborhoods like circles. Some of these topics will be the subject of a follow
up paper.

Acknowledgements
This research has been partially supported by Spanish Ministry of Education and Science/FEDER grant
number MTM2016-74983-C02-(01-02), and projects FEDER-US-1256951, CEI-3-FQM331 and Netmeet-
Data: Ayudas Fundación BBVA a equipos de investigación científica 2019.

24

Figure 13: Number of SEC added in the execution time

References
[1] Amorosi, L., Chiaraviglio, L., D’Andreagiovanni, F., and Blefari-Melazzi, N. Energy-

efficient mission planning of uavs for 5g coverage in rural zones. In 2018 IEEE International Con-
ference on Environmental Engineering (EE) (2018), pp. 1–9.

[2] Benders, J. F. Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik 4 (1962), 238–252.

[3] Blanco, V., Fernández, E., and Puerto, J. Minimum spanning trees with neighborhoods:
Mathematical programming formulations and solution methods. European Journal of Operational
Research 262, 3 (nov 2017), 863–878.

[4] Campbell, J. F., Corberán, Á., Plana, I., and Sanchis, J. M. Drone arc routing problems.
Networks 72, 4 (oct 2018), 543–559.

[5] Corberán, Á., and Laporte, G., Eds. Arc Routing: Problems, Methods, and Applications.
Society for Industrial and Applied Mathematics, Philadelphia (USA), feb 2015.

[6] Edmonds, J. Combinatorial Optimization — Eureka, You Shrink! Springer, 2003, ch. Submodular
Functions, Matroids, and Certain Polyhedra, pp. 11–26.

25

[7] Garfinkel, R., and Webb, J. On crossings, the crossing postman problem, and the rural postman
problem. Networks: An International Journal 34, 3 (1999), 173–180.

[8] Gentilini, I., Margot, F., and Shimada, K. The travelling salesman problem with neighbour-
hoods: Minlp solution. Optimization Methods and Software 28, 2 (2013), 364–378.

[9] Geoffrion, A. M. Generalized Benders decomposition. Journal of Optimization Theory and
Applications 10, 4 (1972), 237–260.

[10] Gurobi Optimization, L. Gurobi Optimizer Reference Manual, Version 8.1.0, 2019.

[11] Knight, R. Drones deliver healthcare, 2016.

[12] Lavars, N. Amazon to begin testing new delivery drones in the US. New Atlas 13 (2015).

[13] Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H. Applications of second-order cone
programming. Linear Algebra and its Applications 284, 1 (1998), 193 – 228. International Linear
Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing.

[14] McCormick, G. P. Computability of global solutions to factorable nonconvex programs: Part i
— convex underestimating problems. Mathematical Programming 10 (1976), 147–175.

[15] Miller, C. E., Tucker, A. W., and Zemlin, R. A. Integer programming formulation of
traveling salesman problems. J. ACM 7, 4 (Oct. 1960), 326–329.

[16] Mladenović, N., and Hansen, P. Variable neighborhood search. Computers & Operations
Research 24, 11 (nov 1997), 1097–1100.

[17] Orloff, C. S. A fundamental problem in vehicle routing. Networks 4, 1 (1974), 35–64.

[18] Otto, A., Agatz, N., Campbell, J., Golden, B., and Pesch, E. Optimization approaches
for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A survey. Networks 72, 4
(2018), 411–458.

[19] Pereira, V. Project: Metaheuristic-Local_Search-Variable_Neighborhood_Search, 2018.

[20] Sawik, T. A note on the Miller-Tucker-Zemlin model for the asymmetric traveling salesman prob-
lem. Bulletin of the Polish Academy of Sciences Technical Sciences 64, 3 (2016), 517–520.

[21] Velednitsky, M. Short combinatorial proof that the DFJ polytope is contained in the MTZ
polytope for the asymmetric traveling salesman problem. Operations Research Letters 45, 4 (jul
2017), 323–324.

[22] Yuan, B., and Zhang, T. Towards Solving TSPN with Arbitrary Neighborhoods: A Hybrid
Solution. In ACALCI (2017), pp. 204–215.

26

	1 Introduction
	2 Description of the Problem
	2.1 Some interesting particular cases

	3 Mixed Integer Non Linear Programming Formulations
	3.1 A Time Dependent Formulation
	3.2 Non-Time Dependent Formulations
	3.2.1 A valid formulation for XPPN based on SECs.
	3.2.2 XPPN formulation based on the Miller Tucker Zemlin.

	4 A heuristic algorithm for XPPN
	5 Strengthening the formulation of XPPN
	5.1 Pre-processing
	5.2 Valid inequalities

	6 A decomposition algorithm
	7 Computational Experiments
	8 Concluding remarks

